Generation of Sinusoidal Waveforms
In our tutorials about Electromagnetism,
we saw how an electric current flowing through a conductor can be used
to generate a magnetic field around itself, and also if a single wire
conductor is moved or rotated within a stationary magnetic field, an
“EMF”, (Electro-Motive Force) will be induced within the conductor due
to this movement.
From this tutorial we learnt that a relationship exists between
Electricity and Magnetism giving us, as Michael Faraday discovered the
effect of “Electromagnetic Induction” and it is this basic principal
that is used to generate a Sinusoidal Waveform.However, if the conductor moves in parallel with the magnetic field in the case of points A and B, no lines of flux are cut and no EMF is induced into the conductor, but if the conductor moves at right angles to the magnetic field as in the case of points C and D, the maximum amount of magnetic flux is cut producing the maximum amount of induced EMF.
Also, as the conductor cuts the magnetic field at different angles between points A and C, 0 and 90o the amount of induced EMF will lie somewhere between this zero and maximum value. Then the amount of emf induced within a conductor depends on the angle between the conductor and the magnetic flux as well as the strength of the magnetic field.
An AC generator uses the principal of Faraday’s electromagnetic induction to convert a mechanical energy such as rotation, into electrical energy, a Sinusoidal Waveform. A simple generator consists of a pair of permanent magnets producing a fixed magnetic field between a north and a south pole. Inside this magnetic field is a single rectangular loop of wire that can be rotated around a fixed axis allowing it to cut the magnetic flux at various angles as shown below.
Basic Single Coil AC Generator
As this wire loop rotates, electrons in the wire flow in one direction around the loop. Now when the wire loop has rotated past the 180o point and moves across the magnetic lines of force in the opposite direction, the electrons in the wire loop change and flow in the opposite direction. Then the direction of the electron movement determines the polarity of the induced voltage.
So we can see that when the loop or coil physically rotates one complete revolution, or 360o, one full sinusoidal waveform is produced with one cycle of the waveform being produced for each revolution of the coil. As the coil rotates within the magnetic field, the electrical connections are made to the coil by means of carbon brushes and slip-rings which are used to transfer the electrical current induced in the coil.
The amount of EMF induced into a coil cutting the magnetic lines of force is determined by the following three factors.
- • Speed – the speed at which the coil rotates inside the magnetic field.
- • Strength – the strength of the magnetic field.
- • Length – the length of the coil or conductor passing through the magnetic field.
Also, our simple single coil generator above only has two poles, one north and one south pole, giving just one pair of poles. If we add more magnetic poles to the generator above so that it now has four poles in total, two north and two south, then for each revolution of the coil two cycles will be produced for the same rotational speed. Therefore, frequency is proportional to the number of pairs of magnetic poles, ( ƒ ∝ P ) of the generator where P = is the number of “pairs of poles”.
Then from these two facts we can say that the frequency output from an AC generator is:
Instantaneous Voltage
The EMF induced in the coil at any instant of time depends upon the rate or speed at which the coil cuts the lines of magnetic flux between the poles and this is dependant upon the angle of rotation, Theta ( θ ) of the generating device. Because an AC waveform is constantly changing its value or amplitude, the waveform at any instant in time will have a different value from its next instant in time.For example, the value at 1ms will be different to the value at 1.2ms and so on. These values are known generally as the Instantaneous Values, or Vi Then the instantaneous value of the waveform and also its direction will vary according to the position of the coil within the magnetic field as shown below.
Displacement of a Coil within a Magnetic Field
If we know the maximum or peak value of the waveform, by using the formula above the instantaneous values at various points along the waveform can be calculated. By plotting these values out onto graph paper, a sinusoidal waveform shape can be constructed. In order to keep things simple we will plot the instantaneous values for the sinusoidal waveform at every 45o and assume a maximum value of 100V. Plotting the instantaneous values at shorter intervals, for example at every 30o would result in a more accurate waveform construction.
Sinusoidal Waveform Construction
Coil Angle ( θ ) | 0 | 45 | 90 | 135 | 180 | 225 | 270 | 315 | 360 |
e = Vmax.sinθ | 0 | 70.71 | 100 | 70.71 | 0 | -70.71 | -100 | -70.71 | -0 |
From the plot of the sinusoidal waveform we can see that when θ is equal to 0o, 180o or 360o, the generated EMF is zero as the coil cuts the minimum amount of lines of flux. But when θ is equal to 90o and 270o the generated EMF is at its maximum value as the maximum amount of flux is cut.
Therefore a sinusoidal waveform has a positive peak at 90o and a negative peak at 270o. Positions B, D, F and H generate a value of EMF corresponding to the formula e = Vmax.sinθ.
Then the waveform shape produced by our simple single loop generator is commonly referred to as a Sine Wave as it is said to be sinusoidal in its shape. This type of waveform is called a sine wave because it is based on the trigonometric sine function used in mathematics, ( x(t) = Amax.sinθ ).
When dealing with sine waves in the time domain and especially current related sine waves the unit of measurement used along the horizontal axis of the waveform can be either time, degrees or radians. In electrical engineering it is more common to use the Radian as the angular measurement of the angle along the horizontal axis rather than degrees. For example, ω = 100 rad/s, or 500 rad/s.
Radians
The Radian, (rad) is defined mathematically as a quadrant of a circle where the distance subtended on the circumference equals the radius (r) of the circle. Since the circumference of a circle is equal to 2π x radius, there must be 2π radians around a 360o circle, so 1 radian = 360o/2π = 57.3o. In electrical engineering the use of radians is very common so it is important to remember the following formula.Definition of a Radian
Relationship between Degrees and Radians
Relationship between Degrees and Radians
Degrees | Radians | Degrees | Radians | Degrees | Radians |
0o | 0 | 135o |
3π
4
|
270o |
3π
2
|
30o |
π
6
|
150o |
5π
6
|
300o |
5π
3
|
45o |
π
4
|
180o | π | 315o |
7π
4
|
60o |
π
3
|
210o |
7π
6
|
330o |
11π
6
|
90o |
π
2
|
225o |
5π
4
|
360o | 2π |
120o |
2π
3
|
240o |
4π
3
|
Angular Velocity of a Sinusoidal Waveform
So we now know that the velocity at which the generator rotates around its central axis determines the frequency of the sinusoidal waveform and which can also be called its angular velocity, ω. But we should by now also know that the time required to complete one revolution is equal to the periodic time, (T) of the sinusoidal waveform.
As frequency is inversely proportional to its time period, ƒ = 1/T we can therefore substitute the frequency quantity in the above equation for the equivalent periodic time quantity and substituting gives us.
Sinusoidal Waveform Example No1
A sinusoidal waveform is defined as: Vm = 169.8 sin(377t) volts. Calculate the RMS voltage of the waveform, its frequency and the instantaneous value of the voltage after a time of 6mS.
We know from above that the general expression given for a sinusoidal waveform is:
The waveforms RMS voltage is calculated as:
The angular velocity (ω) is given as 377 rad/s. Then 2πƒ = 377. So the frequency of the waveform is calculated as:
The instantaneous voltage Vi value after a time of 6mS is given as: