omplex Numbers
The mathematics used in Electrical Engineering to add
together resistances, currents or DC voltages uses what are called “real
numbers”. But real numbers are not the only kind of numbers we need to
use especially when dealing with frequency dependent sinusoidal sources
and vectors. As well as using normal or real numbers, Complex Numbers were introduced to allow complex equations to be solved with numbers that are the square roots of negative numbers, √-1.
In electrical engineering this type of number is called an “imaginary
number” and to distinguish an imaginary number from a real number the
letter “ j ” known commonly in electrical engineering as the j-operator, is used. The letter j is placed in front of a real number to signify its imaginary number operation. Examples of imaginary numbers are: j3, j12, j100 etc. Then a complex number consists of two distinct but very much related parts, a “ Real Number ” plus an “ Imaginary Number ”.Complex Numbers represent points in a two dimensional complex or s-plane that are referenced to two distinct axes. The horizontal axis is called the “real axis” while the vertical axis is called the “imaginary axis”. The real and imaginary parts of a complex number, Z are abbreviated as Re(z) and Im(z), respectively.
Complex numbers that are made up of real (the active component) and imaginary (the reactive component) numbers can be added, subtracted and used in exactly the same way as elementary algebra is used to analyse DC Circuits.
The rules and laws used in mathematics for the addition or subtraction of imaginary numbers are the same as for real numbers, j2 + j4 = j6 etc. The only difference is in multiplication because two imaginary numbers multiplied together becomes a positive real number, as two negatives make a positive. Real numbers can also be thought of as a complex number but with a zero imaginary part labelled j0.
The j-operator has a value exactly equal to √-1, so successive multiplication of “ j “, ( j x j ) will result in j having the following values of, -1, -j and +1. As the j-operator is commonly used to indicate the anticlockwise rotation of a vector, each successive multiplication or power of “ j “, j2, j3 etc, will force the vector to rotate through an angle of 90o anticlockwise as shown below. Likewise, if the multiplication of the vector results in a -j operator then the phase shift will be -90o, i.e. a clockwise rotation.
Vector Rotation of the j-operator
In Electrical Engineering there are different ways to represent a complex number either graphically or mathematically. One such way that uses the cosine and sine rule is called the Cartesian or Rectangular Form.
Complex Numbers using the Rectangular Form
In the last tutorial about Phasors, we saw that a complex number is represented by a real part and an imaginary part that takes the generalised form of:- Where:
- Z - is the Complex Number representing the Vector
- x - is the Real part or the Active component
- y - is the Imaginary part or the Reactive component
- j - is defined by √-1
Complex Numbers using the Complex or s-plane
Four Quadrant Argand Diagram
The Argand diagram above can also be used to represent a rotating phasor as a point in the complex plane whose radius is given by the magnitude of the phasor will draw a full circle around it for every 2π/ω seconds.
Complex Numbers can also have “zero” real or imaginary parts such as: Z = 6 + j0 or Z = 0 + j4. In this case the points are plotted directly onto the real or imaginary axis. Also, the angle of a complex number can be calculated using simple trigonometry to calculate the angles of right-angled triangles, or measured anti-clockwise around the Argand diagram starting from the positive real axis.
Then angles between 0 and 90o will be in the first quadrant ( I ), angles ( θ ) between 90 and 180o in the second quadrant ( II ). The third quadrant ( III ) includes angles between 180 and 270o while the fourth and final quadrant ( IV ) which completes the full circle, includes the angles between 270 and 360o and so on. In all the four quadrants the relevant angles can be found from:
tan-1(imaginary component ÷ real component)
Addition and Subtraction of Complex Numbers
The addition or subtraction of complex numbers can be done either mathematically or graphically in rectangular form. For addition, the real parts are firstly added together to form the real part of the sum, and then the imaginary parts to form the imaginary part of the sum and this process is as follows using two complex numbers A and B as examples.Complex Addition and Subtraction
Complex Numbers Example No1
Two vectors are defined as, A = 4 + j1 and B = 2 + j3 respectively. Determine the sum and difference of the two vectors in both rectangular ( a + jb ) form and graphically as an Argand Diagram.Mathematical Addition and Subtraction
Addition
Subtraction
Graphical Addition and Subtraction
Multiplication and Division of Complex Numbers
The multiplication of complex numbers in the rectangular form follows more or less the same rules as for normal algebra along with some additional rules for the successive multiplication of the j-operator where: j2 = -1. So for example, multiplying together our two vectors from above of A = 4 + j1 and B = 2 + j3 will give us the following result.The Complex Conjugate
The Complex Conjugate, or simply Conjugate of a complex number is found by reversing the algebraic sign of the complex numbers imaginary number only while keeping the algebraic sign of the real number the same and to identify the complex conjugate of z the symbol z is used. For example, the conjugate of z = 6 + j4 is z = 6 – j4, likewise the conjugate of z = 6 – j4 is z = 6 + j4.The points on the Argand diagram for a complex conjugate have the same horizontal position on the real axis as the original complex number, but opposite vertical positions. Thus, complex conjugates can be thought of as a reflection of a complex number. The following example shows a complex number, 6 + j4 and its conjugate in the complex plane.
Conjugate Complex Numbers
Complex Numbers using Polar Form
Unlike rectangular form which plots points in the complex plane, the Polar Form of a complex number is written in terms of its magnitude and angle. Thus, a polar form vector is presented as: Z = A ∠±θ, where: Z is the complex number in polar form, A is the magnitude or modulo of the vector and θ is its angle or argument of A which can be either positive or negative. The magnitude and angle of the point still remains the same as for the rectangular form above, this time in polar form the location of the point is represented in a “triangular form” as shown below.Polar Form Representation of a Complex Number
Converting between Rectangular Form and Polar Form
In the rectangular form we can express a vector in terms of its rectangular coordinates, with the horizontal axis being its real axis and the vertical axis being its imaginary axis or j-component. In polar form these real and imaginary axes are simply represented by “A ∠θ“. Then using our example above, the relationship between rectangular form and polar form can be defined as.Converting Polar Form into Rectangular Form, ( P→R )
Converting Rectangular Form into Polar Form, ( R→P )
Polar Form Multiplication and Division
Rectangular form is best for adding and subtracting complex numbers as we saw above, but polar form is often better for multiplying and dividing. To multiply together two vectors in polar form, we must first multiply together the two modulus or magnitudes and then add together their angles.Multiplication in Polar Form
Division in Polar Form
Likewise, to divide together two vectors in polar form, we must divide the two modulus and then subtract their angles as shown.Complex Numbers using Exponential Form
So far we have considered complex numbers in the Rectangular Form, ( a + jb ) and the Polar Form, ( A ∠±θ ). But there is also a third method for representing a complex number which is similar to the polar form that corresponds to the length (magnitude) and phase angle of the sinusoid but uses the base of the natural logarithm, e = 2.718 281.. to find the value of the complex number. This third method is called the Exponential Form.The Exponential Form uses the trigonometric functions of both the sine ( sin ) and the cosine ( cos ) values of a right angled triangle to define the complex exponential as a rotating point in the complex plane. The exponential form for finding the position of the point is based around Euler’s Identity, named after Swiss mathematician, Leonhard Euler and is given as:
Complex Number Forms
Phasor Notation
So far we have look at different ways to represent either a rotating vector or a stationary vector using complex numbers to define a point on the complex plane. Phasor notation is the process of constructing a single complex number that has the amplitude and the phase angle of the given sinusoidal waveform. Then phasor notation or phasor transform as it is sometimes called, transfers the sinusoidal function of: A(t) = Am sin(ωt ± Φ) from the time domain into the complex number domain which is also called the frequency domain. For example:Summary of Complex Numbers
Then to summarize this tutorial about Complex Numbers and the use of complex numbers in electrical engineering.- Complex Numbers consist of two distinct numbers, a real number plus an imaginary number.
- Imaginary numbers are distinguish from a real number by the use of the j-operator.
- A number with the letter “ j ” in front of it identifies it as an imaginary number in the complex plane.
- By definition, the j-operator j ≡ √-1
- Imaginary numbers can be added, subtracted, multiplied and divided the same as real numbers.
- The multiplication of “ j ” by “ j ” gives j2 = -1
- In Rectangular Form a complex number is represented by a point in space on the complex plane.
- In Polar Form a complex number is represented by a line whose length is the amplitude and by the phase angle.
- In Exponential Form a complex number is represented by a line and corresponding angle that uses the base of the natural logarithm.
- A complex number can be represented in one of three ways:
- Z = x + jy » Rectangular Form
- Z = A ∠Φ » Polar Form
- Z = A ejΦ » Exponential Form
- Euler’s identity can be used to convert Complex Numbers from exponential form into rectangular form.
In the next few tutorials relating to the phasor relationship in AC series circuits, we will look at the impedance of some common passive circuit components and draw the phasor diagrams for both the current flowing through the component and the voltage applied across it starting with the AC Resistance.