The Series RLC Circuit
Thus far we have seen that the three basic passive components, R, L and C
have very different phase relationships to each other when connected to
a sinusoidal AC supply. In a pure ohmic resistor the voltage waveforms
are “in-phase” with the current. In a pure inductance the voltage
waveform “leads” the current by 90o, giving us the expression of ELI. In a pure capacitance the voltage waveform “lags” the current by 90o, giving us the expression of ICE.
This Phase Difference, Φ depends upon the reactive value of the components being used and hopefully by now we know that reactance, ( X
) is zero if the element is resistive, positive if the element is
inductive and negative if the element is capacitive giving the resulting
impedance values as:Element Impedance
Circuit Element | Resistance, (R) | Reactance, (X) | Impedance, (Z) |
Resistor | R | 0 | |
Inductor | 0 | ωL | |
Capacitor | 0 |
Series RLC Circuit
- i(t) = Imax sin(ωt)
- The instantaneous voltage across a pure resistor, VR is “in-phase” with the current.
- The instantaneous voltage across a pure inductor, VL “leads” the current by 90o
- The instantaneous voltage across a pure capacitor, VC “lags” the current by 90o
- Therefore, VL and VC are 180o “out-of-phase” and in opposition to each other.
Individual Voltage Vectors
Kirchoff’s voltage law ( KVL ) for both loop and nodal circuits states that around any closed loop the sum of voltage drops around the loop equals the sum of the EMF’s. Then applying this law to the these three voltages will give us the amplitude of the source voltage, VS as.
Instantaneous Voltages for a Series RLC Circuit
The resulting vector VS is obtained by adding together two of the vectors, VL and VC and then adding this sum to the remaining vector VR. The resulting angle obtained between VS and i will be the circuits phase angle as shown below.
Phasor Diagram for a Series RLC Circuit
Voltage Triangle for a Series RLC Circuit
We know from above that the current has the same amplitude and phase in all the components of a series RLC circuit. Then the voltage across each component can also be described mathematically according to the current flowing through, and the voltage across each element as.
Then in the series RLC circuit above, it can be seen that the opposition to current flow is made up of three components, XL, XC and R with the reactance, XT of any series RLC circuit being defined as: XT = XL – XC or XT = XC – XL with the total impedance of the circuit being thought of as the voltage source required to drive a current through it.
The Impedance of a Series RLC Circuit
As the three vector voltages are out-of-phase with each other, XL, XC and R must also be “out-of-phase” with each other with the relationship between R, XL and XC being the vector sum of these three components thereby giving us the circuits overall impedance, Z. These circuit impedance’s can be drawn and represented by an Impedance Triangle as shown below.The Impedance Triangle for a Series RLC Circuit
Then the magnitude of the current depends upon the frequency applied to the series RLC circuit. When impedance, Z is at its maximum, the current is a minimum and likewise, when Z is at its minimum, the current is at maximum. So the above equation for impedance can be re-written as:
Series RLC Circuit Example No1
A series RLC circuit containing a resistance of 12Ω, an inductance of 0.15H and a capacitor of 100uF are connected in series across a 100V, 50Hz supply. Calculate the total circuit impedance, the circuits current, power factor and draw the voltage phasor diagram.
Inductive Reactance, XL.
Capacitive Reactance, XC.
Circuit Impedance, Z.
Circuits Current, I.
Voltages across the Series RLC Circuit, VR, VL, VC.
Circuits Power factor and Phase Angle, θ.
Phasor Diagram.
Series RLC Circuit Summary
In a series RLC circuit containing a resistor, an inductor and a capacitor the source voltage VS is the phasor sum made up of three components, VR, VL and VC with the current common to all three. Since the current is common to all three components it is used as the horizontal reference when constructing a voltage triangle.The impedance of the circuit is the total opposition to the flow of current. For a series RLC circuit, and impedance triangle can be drawn by dividing each side of the voltage triangle by its current, I. The voltage drop across the resistive element is equal to I x R, the voltage across the two reactive elements is I x X = I x XL – I x XC while the source voltage is equal to I x Z. The angle between VS and I will be the phase angle, θ.
When working with a series RLC circuit containing multiple resistances, capacitance’s or inductance’s either pure or impure, they can be all added together to form a single component. For example all resistances are added together, RT = ( R1 + R2 + R3 )…etc or all the inductance’s LT = ( L1 + L2 + L3 )…etc this way a circuit containing many elements can be easily reduced to a single impedance.