Ohms Law
The relationship between Voltage, Current and Resistance in any DC electrical circuit was firstly discovered by the German physicist Georg Ohm. Ohm
found that, at a constant temperature, the electrical current flowing
through a fixed linear resistance is directly proportional to the
voltage applied across it, and also inversely proportional to the
resistance. This relationship between the Voltage, Current and Resistance forms the bases of Ohms Law and is shown below.
Ohms Law Relationship
To find the Voltage, ( V )
[ V = I x R ] V (volts) = I (amps) x R (Ω)
To find the Current, ( I )
[ I = V ÷ R ] I (amps) = V (volts) ÷ R (Ω)
To find the Resistance, ( R )
[ R = V ÷ I ] R (Ω) = V (volts) ÷ I (amps)
It is sometimes easier to remember Ohms law relationship by using pictures. Here the three quantitiesof V, I and R have been superimposed into a triangle (affectionately called the Ohms Law Triangle) giving voltage at the top with current and resistance at the bottom. This arrangement represents the actual position of each quantity in the Ohms law formulas.
Ohms Law Triangle
Electrical Power in Circuits
Electrical Power, ( P ) in a circuit is the amount of energy that is absorbed or produced within the circuit. A source of energy such as a voltage will produce or deliver power while the connected load absorbs it. Light bulbs and heaters for example, absorb power and convert it into heat or light and the higher their value or rating in watts the more power they will consume.The quantity symbol for power is P and is the product of voltage multiplied by the current with the unit of measurement being the Watt ( W ) with prefixes used to denote milliwatts (mW = 10-3W) or kilowatts (kW = 103W).
Then by using Ohm’s law and substituting for V, I and
R the formula for electrical power can be found as:
To find the Power (P)
[ P = V x I ] P (watts) = V (volts) x I (amps)
Also,
[ P = V2 ÷ R ] P (watts) = V2 (volts) ÷ R (Ω)
Also,
[ P = I2 x R ] P (watts) = I2 (amps) x R (Ω)
Again, the three quantities have been superimposed into a triangle this time called the Power Triangle
with power at the top and current and voltage at the bottom. Again,
this arrangement represents the actual position of each quantity in the
Ohms law power formulas.The Power Triangle
Power Rating
Electrical components are given a “power rating” in watts that indicates the maximum rate at which the component converts the electrical power into other forms of energy such as heat, light or motion. For example, a 1/4W resistor, a 100W light bulb etc.Electrical devices convert one form of power into another so for example, an electrical motor will covert electrical energy into a mechanical force, while an electrical generator converts mechanical force into electrical energy and a light bulb converts electrical energy into both light and heat.
Also, we now know that the unit of power is the WATT, but some electrical devices such as electric motors have a power rating in the old measurement of “Horsepower” or hp. The relationship between horsepower and watts is given as: 1hp = 746W. So for example, a two-horsepower motor has a rating of 1492W, (2 x 746) or 1.5kW.
Ohms Law Pie Chart
To help us understand the the relationship between the various values a little further, we can take all of Ohm’s Law equations from above for finding Voltage, Current, Resistance and Power and condense them into a simple Ohms Law pie chart for use in AC and DC circuits and calculations as shown.Ohms Law Pie Chart
Ohms Law Matrix Table
Ohms Law Example No1
For the circuit shown below find the Voltage (V), the Current (I), the Resistance (R) and the Power (P).
Voltage [ V = I x R ] = 2 x 12Ω = 24V
Current [ I = V ÷ R ] = 24 ÷ 12Ω = 2A
Resistance [ R = V ÷ I ] = 24 ÷ 2 = 12 Ω
Power [ P = V x I ] = 24 x 2 = 48W
As electrical power is the product of V x I, the power dissipated in a circuit is the same whether the circuit contains high voltage and low current or low voltage and high current flow. Generally, power is dissipated in the form of Heat (heaters), Mechanical Work such as motors, etc Energy in the form of radiated (Lamps) or as stored energy (Batteries).
Electrical Energy in Circuits
Electrical Energy is the capacity to do work, and the unit of work or energy is the joule ( J ). Electrical energy is the product of power multiplied by the length of time it was consumed. So if we know how much power, in Watts is being consumed and the time, in Seconds for which it is used, we can find the total energy used in watt-seconds. In other words, Energy = power x time and Power = voltage x current. Therefore electrical power is related to energy and the unit given for electrical energy is the watt-seconds or joules.Electrical Power and Energy Triangle
For example, if a 100 watt light bulb is left-“ON” for 24 hours, the energy consumed will be 8,640,000 Joules (100W x 86,400 seconds), so prefixes such as kilojoules (kJ = 103J) or megajoules (MJ = 106J) are used instead and in this simple example, the energy consumed will be 8.64MJ (mega-joules).
But dealing with joules, kilojoules or megajoules to express electrical energy, the maths involved can end up with some big numbers and lots of zero’s, so it is much more easier to express electrical energy consumed in Kilowatt-hours.
If the electrical power consumed (or generated) is measured in watts or kilowatts (thousands of watts) and the time is measure in hours not seconds, then the unit of electrical energy will be the kilowatt-hours,(kWhr). Then our 100 watt light bulb above will consume 2,400 watt hours or 2.4kWhr, which is much easier to understand the 8,640,000 joules.
1 kWhr is the amount of electricity used by a device rated at 1000 watts in one hour and is commonly called a “Unit of Electricity” which is what is measured by the utility meter and is what consumers purchase from their electricity suppliers.
Kilowatt-hours are the standard units of energy used by the electricity meter in our homes to calculate the amount of electrical energy we use and therefore how much we pay. So if you switch on an electric fire with an element rated at 1000 watts and left it on for 1 hour you will have consumed 1 kWhr of electricity. If you switched on two electric fires each with 1000 watt elements for half an hour the total consumption would be exactly the same amount of electricity – 1kWhr.
So, consuming 1000 watts for one hour uses the same amount of power as 2000 watts (twice as much) for half an hour (half the time). Then for a 100 watt light bulb to use 1 kWhr or one unit of electrical energy it would need to be switched on for a total of 10 hours (10 x 100 = 1000 = 1kWhr).
Now that we know what is the relationship between voltage, current and resistance in a circuit, in the next tutorial about DC Theory we will look at the Standard Electrical Units used in electrical and electronic engineering to enable us to calculate these values and see that each value can be represented by either multiples or sub-multiples of the unit.